Camera-Inertial Sensor modelling and alignment for Visual Navigation

نویسندگان

  • João Alves
  • Jorge Lobo
  • Jorge Dias
چکیده

Inertial sensors attached to a camera can provide valuable data about camera pose and movement. In biological vision systems, inertial cues provided by the vestibular system, are fused with vision at an early processing stage. Vision systems in autonomous vehicles can also benefit by taking inertial cues into account. In order to use off-the-shelf inertial sensors attached to a camera, appropriate modelling and calibration techniques are required. Camera calibration has been extensively studied, and standard techniques established. Inertial navigation systems, relying on highend sensors, also have established techniques. This paper presents a technique for modelling and calibrating the camera integrated with low-cost inertial sensors, three gyros and three accelerometers for full 3D sensing. Using a pendulum with an encoded shaft, inertial sensor alignment, bias and scale factor can be estimated. Having both the camera and the inertial sensors observing the vertical direction at different poses, the rigid rotation between the two frames of reference can be estimated. Preliminary simulation and real data results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera - Inertial Sensor Modeling and Alignment for Visual Navigation *

This article presents a technique for modeling and calibrating a camera with integrated low-cost inertial sensors, three gyros and three accelerometers for full 3D sensing. Inertial sensors attached to a camera can provide valuable data about camera pose and movement. In biological vision systems, inertial cues provided by the vestibular system, are fused with vision at an early processing stag...

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

Gyroscope Drift Error Analysis in the Position-Independent Navigation Algorithm of a stable platform Inertial System

This paper deals with analyzing gyroscope drift error in the position-independent navigation algorithm of a stable platform inertial system. Most of the stable platform navigation algorithms proposed in the literature have drawbacks of estimating position rates for alignment commands. Not only the estimating position rates are the basic source of position errors, but they also make the alignmen...

متن کامل

Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment

Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...

متن کامل

Adaptive Fusion of Inertial Navigation System and Tracking Radar Data

Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003